PromptsVault AI is thinking...
Searching the best prompts from our community
ChatGPTMidjourneyClaude
Searching the best prompts from our community
Click to view expert tips
Define data structure clearly
Specify JSON format, CSV columns, or data schemas
Mention specific libraries
PyTorch, TensorFlow, Scikit-learn for targeted solutions
Clarify theory vs. production
Specify if you need concepts or deployment-ready code
Master clustering algorithms for customer segmentation, data exploration, and pattern discovery in unsupervised settings. K-Means clustering: 1. Algorithm implementation: centroid initialization, iterative assignment, convergence criteria. 2. Hyperparameter tuning: k selection using elbow method, silhouette score, gap statistic. 3. Preprocessing: feature scaling, standardization, handling categorical variables. Hierarchical clustering: 1. Agglomerative clustering: bottom-up approach, linkage criteria (ward, complete, average). 2. Dendrogram analysis: optimal cluster count, distance thresholds, visual interpretation. 3. Divisive clustering: top-down approach, computational complexity considerations. Density-based clustering: 1. DBSCAN: density-based spatial clustering, epsilon and min_samples parameters. 2. Outlier handling: noise point identification, varying density clusters. 3. HDBSCAN: hierarchical DBSCAN, cluster stability, automatic parameter selection. Advanced clustering: 1. Gaussian Mixture Models: probabilistic clustering, soft assignments, EM algorithm. 2. Spectral clustering: graph-based approach, non-convex clusters, similarity matrices. 3. Mean shift: mode-seeking algorithm, bandwidth selection, non-parametric density estimation. Cluster evaluation: 1. Internal measures: silhouette score (>0.5 good), Calinski-Harabasz index, Davies-Bouldin index. 2. External measures: adjusted rand index, normalized mutual information, homogeneity/completeness. 3. Visual validation: t-SNE plots, PCA visualization, cluster interpretation. Applications: customer segmentation (RFM analysis), market research, gene expression analysis, image segmentation, social network analysis, dimensionality reduction for visualization and preprocessing.